Растворимость веществ сильно меняется в разных растворителях. Тем не менее установлено несколько общих правил, относящихся к растворимости, которые применимы главным образом к органическим соединениям.
Одно из этих правил гласит, что вещество имеет тенденцию растворяться в таких растворителях, которые химически подобны ему. Так, углеводород нафталин С10Н8 обладает высокой растворимостью в бензине, представляющем собой смесь углеводородов, несколько меньшей растворимостью — в этиловом спирте С2Н5ОН, молекулы которого состоят из коротких углеводородных цепей с гидроксильными группами, и очень плохой растворимостью — в воде, которая сильно отличается от углеводородов. В то же время борная кислота В(ОН)3, являющаяся гидроокисью, обладает умеренной растворимостью в воде и в спирте, т. е. в веществах, которые содержат гидроксильные группы, и нерастворима в бензине. Три указанных растворителя сами подтверждают то же правило: как бензин, так и вода смешиваются со спиртом (растворяются в нем), в то время как бензин и вода взаимно растворяются лишь в очень небольших количествах.
Этим фактам можно дать следующее объяснение: углеводородные группы (состоящие только из атомов углерода и водорода) взаимно притягиваются очень слабо, о чем свидетельствуют более низкие температуры плавления и кипения углеводородов по сравнению с другими веществами приблизительно такой же молекулярной массы. В то же время между гидроксильными группами и молекулами воды существует очень сильное межмолекулярное притяжение; температуры плавления и кипения воды лежат выше соответствующих температур любого другого вещества с небольшой молекулярной массой. Такое сильное притяжение обусловлено частично ионным характером связей О—Н, благодаря чему на атомы накладывается электрический заряд. Положительно заряженные атомы водорода притягиваются затем к отрицательно заряженным атомам кислорода других молекул, образуя водородные связи и прочно удерживая молекулы вместе.
Термин гидрофильный часто применяют по отношению к веществам или группам, притягивающим воду, а термин гидрофобный применяют по отношению к веществам или группам, отталкивающим воду и притягивающим углеводороды. В действительности молекулы гидрофобного вещества воздействуют силами электронного вандерваальсова притяжения как на молекулы воды, так и на молекулы углеводородов. Растворимость паров воды, например, в керосине (смеси углеводородов) при 25°С и давлении 0,0313 атм (т. е. при давлении насыщенного пара над жидкой водой при этой температуре) составляет 72 мг в 1 кг растворителя, в то время как растворимость метана при том же парциальном давлении несколько меньше— 10 мг в 1 кг керосина. Молекулы воды притягиваются молекулами керосина несколько сильнее, нежели молекулы метана. Различие между водой и метаном заключается в том, что при более высоких парциальных давлениях пары воды конденсируются в жидкость, которая стабилизируется межмолекулярными водородными связями, тогда как метан продолжает оставаться газом.
Растворимость метана в полярных растворителях почти та же, что и в неполярных; в спиртах от метанола СН3ОН до пентанола (амилового спирта) С5Н11ОН растворимость метана составляет 72—80% значения для керосина. Силы вандерваальсова притяжения молекул растворителя в отношении молекул метана остаются почти одинаковыми для разных растворителей. С другой стороны, растворимость водяных паров при давлении 0,313 атм в амиловом спирте в 1400 раз больше, чем в керосине, и вода смешивается в любых соотношениях с легкими спиртами.
Вещества, состоящие из небольших неполярных молекул, например кислород, азот и метан, растворяются в воде примерно в 10 раз хуже, чем в неполярных растворителях. Вещества, состоящие из более крупных неполярных молекул, по существу не растворяются в воде, но, как правило, хорошо растворяются в неполярных растворителях. Вода как бы противодействует включению этих молекул, поскольку образование необходимых для этого пустот сопряжено с разрывом или деформацией водородных связей между молекулами воды. Соединения, подобные бензину и нафталину, не растворяются в воде, поскольку их молекулы в растворе мешали бы молекулам воды образовывать столь же большое число прочных водородных связей, как в чистой воде; с другой стороны, борная кислота растворима в воде потому, что уменьшение числа связей между молекулами воды компенсируется образованием прочных водородных связей между молекулами воды и гидроксильными группами молекул борной кислоты.